problem integracija

K

karakoos23

Guest
Bok

Se bilo tko može dokaz ∫ cos x dx = sin x C?

Thanks in advance

 
2Cos (x) = e ^ JX e ^-JX

2jSin (x) = e ^ JX-e ^-JX

∫ cos x dx = 1 / 2 ∫ e ^ JX dx 1 / 2 ∫ e ^-JX dx = e ^ 1/2j JX - 1/2j e ^-JX C = sin (x) CAdded after 1 hours 52 minutes:∫ cos x dx = sin (x) C

d / dx (sin (x) C) =?

d / dx sin (x) dx = lim -> 0 (1/dx) (sin (x dx) - sin (x)) dx = lim -> 0 (sin (x) cos (dx) Grijeh (dx) cos (x) - sin (x)) / dx

Lim DX -> 0 sin (x) cos (dx) / dx - sin (x) / dx = 0

Lim DX -> 0 Sin (DX) cos (x) / dx = cos (x)

d / dx sin (x) = cos (x)

 
Hi bunalmis

Možete li molim recite mene što naslov udžbenika u kojem se mogu naći taj analiza cosinus?

To bi bilo mnogo poštovati

 
WowDodano nakon 39 sekundi:bunalmis wrote:

2Cos (x) = e ^ JX e ^-JX2jSin (x) = e ^ JX-e ^-JX∫ cos x dx = 1 / 2 ∫ e ^ JX dx 1 / 2 ∫ e ^-JX dx = e ^ 1/2j JX - 1/2j e ^-JX C = sin (x) C
Added after 1 hours 52 minutes:
∫ cos x dx = sin (x) Cd / dx (sin (x) C) =?d / dx sin (x) dx = lim -> 0 (1/dx) (sin (x dx) - sin (x)) dx = lim -> 0 (sin (x) cos (dx) Grijeh (dx) cos (x) - sin (x)) / dxLim DX -> 0 sin (x) cos (dx) / dx - sin (x) / dx = 0Lim DX -> 0 Sin (DX) cos (x) / dx = cos (x)d / dx sin (x) = cos (x)
 

Welcome to EDABoard.com

Sponsor

Back
Top